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Typical Electrical Engineering Problems

A noisy binary communication channel
• The channel can be twisted pair, coaxial cable, fiber optic cable, 

or wireless medium.
• The channel introduces noise and thereby bit errors.

h(n) 

Channel
x(n) y(n)

Station A Station B

00110001010... 00100001010...
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Typical Electrical Engineering Problems

Signal detection
• Desired target signal is buried in noise. 

• Determine the presence or absence of the desired signal.
• Filter the signal out of noise. 
• Demodulate the signal.

( ) ( )cos( ( )) ( )x t A t t t n tω φ= + +
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Typical Electrical Engineering Problems

Networks
• In large computer networks, there are limited resources 

(e.g., bandwidth, routers, switches, printers and other devices) that 
need to be shared by the users.
– User jobs/packets are queued and assigned service based 

on predefined criteria.
– Demand is uncertain and service time is also uncertain.
– Delay from the time the service is requested to the time it is 

completed.
• Telephone networks, multiuser computer networks, and other 

communication networks. 
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Our Interest and Goals 

• Study tools to characterize the uncertainty

- Probability theory, random variables, random processes

• Apply the tools to characterize non-deterministic signals

- Random events, random signals

• Analyze systems processing non-deterministic signals

- LTI systems with random inputs
- Communication channels with noise
- Communication networks with uncertain delays
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Basics of Probability

• In a random experiment, the outcome is uncertain
– Physical experiment
– Abstraction

• The entire collection of outcomes is the sample space, S
– Universal event or certain event

• An event consists of a single or a group of outcomes. 
– Events are user defined: A, B, …

• A measure of likelihood of occurrence of an event, A 
– Probability of A or Pr[A]

Probability Assignment

Random
Experiment

Sample
Space

Events and 
Their Probabilities

Define Events

Outcome
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Example:

Roll a die once. All faces are equally likely. 
• Sample space [discrete sample space]

S = {1,2,3,4,5,6}
• Define events:

A1 = {Odd numbered face} = {1,3,5}
A2  = {Face value < 3} = {1,2}
A3  = {Even numbered face value} = {2,4,6}

• Probability assignment:
Pr[A1] = 3/6 = 1/2
Pr[A2] = 2/6 = 1/3
Pr[A3] = 3/6 = 1/2
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Continuous Sample Space

Continuous sample space <=> Continuous magnitude signals

• Output of the radio receiver is measured at t = t1. The dynamic 
range of the receiver output is −5V to +5V

S = {s: −5 ≤ s ≤ +5}
• A continuous sample space has uncountably infinite values or outcomes

– s could take values like 4.9326784531432677…
• Examples of events and probability assignments:

Radio 
Receiver

−5V to +5V
s(t)

1 1

2 2

3 3∆ 0

A { : 2.5 2.5}, Pr[A ] 0.50
A { : 1 1}, Pr[A ] 0.20
A   {s: s  2.3 }, lim Pr[A ] 0

x

s s
s s

x
→

= − ≤ ≤ =
= − ≤ ≤ =
= = + ∆ =
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Discrete Sample Space

Discrete sample space <=> Discrete valued signals 

• Output of an 8-bit ADC contains only  28 = 256 values

S = {−5, −4.9609375, …, −0.0390625,0,0.0390625, …, 4.9609375} or
S = {−128, −127, …, −1, 0, 1, …, 127}: decimal equivalent of 2’s
complement representation

• A discrete sample space has finite or countably infinite values or 
outcomes 
– In this case, we have 256 values or outcomes  (finite)

8-bit
ADC

s(t)
−5V to +5V

s[n]
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Two Dimensional Sample Space

Roll two dice [discrete sample space] 
S = {(i,j): (1,1), (1,2), (1,3), …, (4,3), …, (6,4), (6,5), (6,6)}

2

21 3 4 5 6

1

3

4

5

6
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Events and Event Operations

S Certain event
0 Null event
A1, A2, A3,… User defined events
A1 + A2 Union operation   (A1 ∪ A2)
A1 A2 Intersection operation (A1 ∩ A2)
AC Complement operation
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Example:

Consider a sample space represented by  S = {1,2,3,4,5,6}

Let A1 = {1,3,5},   A2 = {1,2},   and  A3 = {2,4,6} be the user defined
events

– A1
C = ({1,3,5}) C = {2,4,6}  = A3

– A2 + A3 = {1,2,4,6} 
– A1 + A3 = {1,2,3,4,5,6} = S
– A1 A2 = {1},     A2 A3 = {2}
– A1 A3 = 0
– A1 + 0 = A1

– A1 0 = 0 A1=
{1, 3, 5} A1

c =
{2, 4, 6}

S = {1,2,3,4,5,6}
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Postulates for the Algebra of Events

• A1 A1
C = 0 Mutual exclusion

• A1 S = A1 Inclusion
• (A1

C) C = A1 Double complement
• A1 + A2 = A2 + A1 Commutative law
• A1 + (A2 + A3) = (A1 + A2) + A3 Associative law
• A1 ( A2 + A3) =  A1 A2 + A1A3 Distributive law
• (A1 A2) C = A1

C + A2
C De Morgan’s law
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Other Identities

– SC = 0 
– A1 + 0 = A1 Inclusion
– A1 A2 = A2 A1 Commutative law
– A1 (A2 A3) = (A1 A2 )A3 Associative law

– A1 + ( A2 A3) = (A1 + A2) (A1 + A3)    Distributive law
– (A1 + A2 ) C = A1

C A2
C De Morgan’s law



1,2-14 © M. Tummala & C. W. Therrien 2004

Finite Unions and Intersections
These are included in the algebra.

Infinite Unions and Intersections
If they are included, the algebra of events is called a Sigma Algebra.
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Mutually Exclusive and Collectively Exhaustive Sets 
of Events

Mutually exclusive:

Collectively exhaustive:

Working Definition of the Sample Space

THE SAMPLE SPACE IS REPRESENTED BY THE FINEST
GRAIN, MUTUALLY EXCLUSIVE, COLLECTIVELY
EXHAUSTIVE SET OF OUTCOMES FOR AN EXPERIMENT.

jkAA jk ≠= 0

SA
j

j =∪
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The Axioms of Probability

∑
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Some Corollaries

c

1 2 1 2

1 2 1 2

1 2 1 2 1 2

1. Pr[A ] 1 Pr[A] (ii, iii)
2. 0 Pr[A] 1 (i, ii, iii)
3. If A A , then  Pr[A ] Pr[A ] (i, iii)
4. Pr[0] 0 (ii, iii)
5. If A A 0,   then Pr[A A ] 0
6. Pr[A A ] Pr[A ] Pr[A ] Pr[A A ]

= −
≤ ≤

⊂ ≤
=

= =
+ = + −

A1 A2
A2 A1
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The Principle of Total Probability

1

P r[A ] 1
n

j
j =

=∑

1 2Pr[B] Pr[BA ] Pr[BA ]
Pr[BA ]n

= + +
+"

A1

A2

An
B

jkAA jk ≠= 0

SA
n

j
j =

=
∪

1

Now let B be any event in S. Then, 

then

Let A1, A2, …, An be a set of mutually exclusive and collectively
exhaustive events:
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Independence of Events

Two events A1 and A2 are said to be statistically independent
if and only if

Pr[A1A2] = Pr[A1] Pr[A2]
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System Reliability Calculations

S1

S2

yx

Parallel Connection of switches

Define: A1 = {S1 fails},    Pr[A1] = p,    Pr[A1
c] = 1 − p = q

A2 = {S2 fails},    Pr[A2] = p,    Pr[A2
c] = 1 − p = q

F = {no connection between x and y} =  A1 A2 

The probability that the connection fails:

Pr[F] = Pr[A1A2] = Pr[A1] Pr[A2]            A1 and A2 are independent
= p2 



1,2-21 © M. Tummala & C. W. Therrien 2004

Series connection of switches

Assume that switch failures are statistically independent; failure 
results in an open connection.

F = {no connection between x and y} =  A1+ A2 

The probability that the connection fails:

Pr[F] = Pr[A1+ A2] = Pr[A1] + Pr[A2] − Pr[A1A2] 
= Pr[A1] + Pr[A2] − Pr[A1] Pr[A2] A1 and A2 are independent
= p + p − p2 = 2p − p2

S1 S2 yx

System Reliability Calculations
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Example:
Consider a simple switching network as follows:

Define: Ak = {switch Sk fails},  k = 1,2,3,4        Pr[Ak] = p
(a) Find the probability that the path between x and y is established.

Let   F = {no connection between x and y} = (A1 + A2)A3 + A4

The probability of path failure is given by
Pr[F] = Pr[(A1 + A2)A3 + A4] = Pr[A1A3 + A2A3] + Pr[A4] − Pr[A1A3A4+ A2A3A4] 

= Pr[A4] + Pr[A1A3] + Pr[A2A3] − Pr[A1A2A3] 
− Pr[A1A3A4] − Pr[A2A3A4] + Pr[A1A2A3A4] 

= p + 2p2 - 3p3 + p4

The desired probability is then given by
Pr[path established] = 1 - Pr[F] = 1 - p - 2p2 + 3p3 - p4

S1 S2

S3

S4

x y
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(b) Compute the desired probability as a function of p:

p 1 − Pr[F]

0.1 0.8829
0.01 0.98980299
0.001 0.998998002999
0.0001 0.999899980003

Pr[path established] = 1 - Pr[F] = 1 - p - 2p2 + 3p3 - p4
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Repeated Independent Trials  (Bernoulli Trials)

A random experiment, E, consists of several sub-experiments 
or trials, Ei: 

– All sub-experiments have the same sample space, Si.
– Events from all sub-experiments are mutually independent:

Pr[A1A2A3...An] = Pr[A1]Pr[A2]Pr[A3]...Pr[An], 
where Ai is an event from Si.

– The sample space of E is:
S = S1 × S2 × S3 × ... × Sn
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Counting Methods and Probability
The assignment of probability is given by

The rule of products:
Consider an experiment with n outcomes; repeat r times 

Total number of outcomes is given by

1
1

Number of outcomes in Event APr[A ]
Number of outcomes of experiment

=

n r
rN n n n n= ⋅ ⋅ ⋅ ="

or in a general case

1 2
1

...i

r
n
r r i

i

N n n n n
=

= = ∏
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376,881,1126526
5 ==N

2610263 ⋅⋅=inN

129666666 46
4 ==⋅⋅⋅=N

Example:
Roll a die 4 times sequentially. The total number of outcomes is

Example:
Form 5-letter words using 26 English alphabet characters. Characters 

can be repeated, and the words so formed do not have to be meaningful. 

Example:
Construct variable names of length 3 using a letter, a number, and a letter 

(e.g., A2C). 
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PERMUTATIONS (products without replacement)

Select r objects from among a given set of n distinct objects 
where we pay attention to the order in which the r objects 
are selected.  

Special case: For r = n:

nr
rn

n
rnnnnPn

r

≤
−

=

+−−−=

for  ,
)!(

!
)1()2)(1( "

!nP n
n =
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Example:

Form 5-letter words using the English alphabet. The characters 
cannot be repeated, and the words do not have to be meaningful. 

The total number of words that can be formed is: 

600,893,72223242526
!21
!26

)!526(
!2626

5

=⋅⋅⋅⋅==

−
=P
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COMBINATIONS (without replacement, without order)

Select r objects from among a given set of n distinct objects 
where we pay no attention to the order in which the r objects
are selected.

( 1) ( 1) !
( 1)( 2) (1) !( )!

n
r

nn n n r nC
rr r r r n r

⎛ ⎞− − += = = ⎜ ⎟− − − ⎝ ⎠

"
"

Binomial coefficient       “n choose r”
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Example:
Consider 5 workstations having equal capabilities: {a, b, c, d, e}
• Permutations: Select two workstations where one will be a server 

and the other a graphics workstation. The possible selections are:
ab ba ac  ca  ad  da ae ea  bc  cb bd db  be  eb cd dc  ce

ec de  ed

• Combinations: Select two workstations where both will be used 
as graphics workstations. The possible selections are:
ab ac   ad   ae bc   bd be   cd ce de

2045
)!25(

!55
2 =⋅=

−
=P

10
2
45

)!25(!2
!55

2 =⋅=
−

=C

“ab ≠ ba”

“ab = ba”
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Example:
We plan to buy 5 personal computers. The computer store has a stock of 10 

foreign made PCs and 15 US made PCs that meet our specifications. 
(a) Assuming that the 5 computers are randomly chosen from this lot, what 

is the probability that exactly 3 US made computers are selected?   
– The sample space is given by

S = {combinations of r = 5 chosen from n = 25}

– The desired event A = {exactly 3 of the 5 selected are US made}

– The probability that we have 3 US made computers is 
[Hyper geometric distribution]

)!525(!5
!2525

5 −
== CNS

)!210(!2)!315(!3
!10!1510

2
15
3 −−

== CCN A

15 10
3 2

25
5

15! 10! 5! (25 5)!Pr[A] 0.3854
3! (15 3)! 2! (10 2)! 25!

A

S

C CN
N C

−= = = ≅
− −
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(b) Assuming that the 5 computers are randomly chosen from this lot, 
what is the probability that at least 1 is foreign made?   
– Let event B = {none of the 5 selected computers is foreign made}
– The desired event C = {one or more of the 5 are foreign made}
– Since BC = C, we can write Pr[C] = 1 − Pr[B]

15 10
5 0

25
5

15! 10! 5! (25 5)!Pr[B] 0.05652
5! (15 5)! 0! (10 0)! 25!

Pr[C] 1 Pr[B] 0.94348

B

S

C CN
N C

−= = = ≅
− −

= − =

Example (continued):



1,2-33 © M. Tummala & C. W. Therrien 2004

Example:

Consider a box of 25 modem chips: 5 of them are known to be defective. 
Select 6 from the box at random and test them. What is the probability 
that exactly 2 are defective? 
– Sample Space: S = {combinations of r = 6 chosen from n = 25}
– Event:  A = {exactly 2 of the 6 selected chips are defective}
– The number of outcomes in S is given by:

– For the selected 6 chips, we are interested in the case, where 2 are 
defective (i.e., they are from the 5 defective chips in the box) and 
4 are non-defective (i.e., they are from the 20 non-defective chips 
in the box).   

)!625(!6
!2525

6 −
== CNS
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Example (continued):

– The number of outcomes in A is given by:

– The probability that exactly 2 of the 6 selected chips are defective is 
[Hyper geometric distribution]

)!420(!4)!25(!2
!20!520

4
5
2 −−

== CCN A

5 20
2 4

25
6

Pr[A]

5! 20! 6! (25 6)! 0.2736.
2! (5 2)! 4! (20 4)! 25!

A

S

N C C
N C

= =

−= ≅
− −
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Conditional Probability
Probability of occurrence of one event (say, A1) subject to the 
knowledge that another event (say, A2) has occurred. 

Pr[A1 | A2] is read as “probability of A1 given A2 ”

If A1 and A2 are independent, then

1 2
1 2

2

Pr[A A ]Pr A A
Pr[A ]

⎡ ⎤ =⎣ ⎦ A1 A2

S

1 2 1 2
1 2 1

2 2

Pr[A A ] Pr[A ]Pr[A ]Pr A A Pr[A ]
Pr[A ] Pr[A ]

⎡ ⎤ = = =⎣ ⎦
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Example:

Consider a sequence of 3 binary numbers (occurring randomly). 
Sample space: S = {000, 001, 010, 011, 100, 101, 110, 111}
What is the probability that there are more 1’s than 0’s given that 

the first 
bit is a 1.

• Let us define two events:
A1 = {more 1’s than 0’s} = {011, 101, 110, 111}
A2 = {the first bit is a 1} = {100, 101, 110, 111}

• Their intersection:
A1A2 = {101, 110, 111}
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• All 8 events in the sample space have probability 1/8, therefore

• The conditional probability is obtained as follows:

1 2
1 2

2

Pr[A A ] 3 / 8 3Pr A A
Pr[A ] 4 / 8 4

⎡ ⎤ = = =⎣ ⎦

2 1 2
4 3Pr[A ] and Pr[A A ]
8 8

= =

Sample Space
111
110
101
100
011
010
001
000

0.5

0.5

0.5

0.5

0.5

0.5 0

1

0

1

1

1

1

1

1
0

0

0

0

0

Tree diagram

Example cont’d:
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The Principle of Total Probability Revisited
Let A1, A2, …, An be mutually exclusive and collectively 
exhaustive events. Let B be an event in S.

Then,

1 2

1 1

1

Pr[B] Pr[BA ] Pr[BA ] Pr[BA ]

Pr B A Pr[A ] Pr A Pr[A ]

Pr B A Pr[A ]

n

n n

n

i i
i

B

=

= + + +

= ⎡ ⎤ + + ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⎡ ⎤⎣ ⎦∑

…

…

A1

A2

An
B

BA2
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Example:    Binary Communication Channel

Channel

1S

Transmitter Receiver

Pr[0R|0S] = 0.95
0S 0R

1R

Pr[1R|1S] = 0.90
Pr[1R| 0S] = 0.05

Pr[0R|1S] = 0.10Pr[0S] = 0.5

Pr[1S] = 0.5
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1S 0S

error
0.5

0.5

0.10

0.05

0.95

1S

0S

0R

1R

0S0R
0.475

1S0R
(error)
0.050

0S1R
(error)
0.025

1S1R 
0.450

1R

0R

0.90

a priori

conditional

Pr[error |1 ] Pr[0 |1 ] 0.10
Pr[error | 0 ] Pr[1 | 0 ] 0.05

Pr[error] Pr[error |1 ]Pr[1 ] Pr[error | 0 ]Pr[0 ]
0.10 0.50 0.05 0.50 0.075

S R S

S R S

S S S S

= =
= =

= +
= ⋅ + ⋅ =

Example cont’d.
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More on Conditional Probability
From the definition of conditional probability, we can write

This can be written as

1 2
1 2 1 2 1 2 2

2

1 2
2 1 1 2 2 1 1

1

1 2 2 2 1 1

Pr[A A ]Pr A A or Pr[A A ] Pr A A Pr[A ]
Pr[A ]

Pr[A A ]Pr A A or Pr[A A ] Pr A A Pr[A ]
Pr[A ]

Pr A A Pr[A ] Pr A Pr[A ]A

⎡ ⎤ = = ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ = = ⎡ ⎤⎣ ⎦ ⎣ ⎦

∴ ⎡ ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦

1 2 2
2 1

1

Pr A A Pr[A ]
Pr A A

Pr[A ]
⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦
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Let A1, A2, …, An be a set of mutually exclusive, collective
exhaustive events. Then,

Or, applying the Principle of Total Probability

This is called Bayes’ Rule.

Pr[B | A ]Pr[A ]
Pr A | B

Pr[B]
j j

j⎡ ⎤ =⎣ ⎦

1

Pr[B | A ] Pr[A ]
Pr A | B

Pr[B | A ]Pr[A ]

j j
j n

k k
k =

⎡ ⎤ =⎣ ⎦
∑

Bayes’ Rule
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Example: Binary Communication Channel

Transmitter Receiver

Pr[0R|0S] = 0.95
0 0

1
Pr[1R|1S] = 0.90

Pr[1R| 0S] = 0.05

Pr[0R|1S] = 0.10Pr[0S] = 0.5

Pr[1S] = 0.5

Determine the inverse probability, P[1S |1R].
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Determine the inverse probability, P[1S |1R]:

[ ]

9474.0
025.045.0

45.0
]0Pr[]0|1Pr[]1Pr[]1|1Pr[

]1Pr[]11Pr[
]1Pr[

]1Pr[]11Pr[
11Pr

=
+

=

+
=

=

SSRSSR

SSR

R

SSR
RS

Example cont’d.
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Example:

Consider 3 boxes of ICs:
Box 1 contains 1500 ICs and 10% of them are defective;  
Box 2 contains 2000 ICs and 20% of them are defective; and
Box 3 contains 3000 ICs and 16% of them are defective.

Select 1 of the 3 boxes at random and choose an  IC from 
that box at random.

(a)  What is the probability that this IC is defective?
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Define: A = “selected IC is defective” ,  
Bi = “IC is from box i”

B1 B3

A

B2

1 1 2 2 3 3Pr[A] Pr A B Pr[B ] Pr A B Pr[B ] Pr A B Pr[B ]

1 1 1 0.460.10 0.20 0.16 0.1533
3 3 3 3

= ⎡ ⎤ + ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⋅ + ⋅ + ⋅ = =

• By the principle of total probability, we can write

(a)  What is the probability that this IC is defective?
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(b) Suppose that the selected IC is found to be defective.  
What is the probability that this IC came from box #3?

By Bayes’ theorem, we can write

3 3
3

Pr[A | B ]Pr[B ]Pr B A
Pr[A]
10.16 0.163 0.34780.46 0.46

3

⎡ ⎤ =⎣ ⎦

⋅
= = =

(c) Suppose all IC’s are thoroughly mixed in one box and 
an IC is selected at random from the box. What is the
probability that the IC is defective?
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Basic Information Theory

Given an event A and its probability Pr[A], information associated 
with A is given by

where x is the base of the logarithm: 
if x = 2, the units of information are  bits; 
x = 10, the units are hartleys; 
and x = e, the units are nats. 

Note the identity: loga b = x means that ax = b.

1[A] log log Pr[A],
Pr[A]x xI = = −



1,2-49 © M. Tummala & C. W. Therrien 2004

Example:

Consider two events: A1 and A2 with corresponding probabilities 
of occurrence of 0.125 and 0.875, respectively. 
The information associated with these events:  

I[A1] = −log2 (0.125) =3 bits and I[A2] = −log2 (0.875) = 0.1925 bits.

Entropy
Given a set of independent events that are mutually exclusive and 

collectively exhaustive, we can define the average information 
associated with the random experiment as

Pr[A ] [A ] Pr[A ] log Pr[A ].i i i x i
i i

H I= ⋅ = − ⋅∑ ∑
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Example:

Consider a sequence 1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 0.

We estimate the probability of occurrence of each symbol as follows:

Pr[1] = Pr[6] = Pr[7] = Pr[0] = 1/16
Pr[2] = Pr[3] = Pr[4] = Pr[5] = Pr[8] = Pr[9] = 2/16.

The entropy of this sequence is 

2Pr[A ] log Pr[A ] 3.25 bits.i i
i

H = − ⋅ =∑
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Shannon-Fano Code

• Messages are composed of an alphabet in which the frequency of 
occurrence of each letter is a probabilistic phenomenon. 
– For transmission purposes the messages are compressed such 

that the code length of a letter is inversely proportional to its 
frequency of occurrence (e.g., think of the Morse code).

– Since the letters are transmitted sequentially, no short 
codeword be part of the start of a longer codeword for unique 
decodability. 

• Shannon-Fano Algorithm:
– Arrange letters in a descending order of their probabilities by 

breaking any ties arbitrarily.
– Starting at the top, partition the letters into two equi-probable 

subgroups (as closely as possible): assign 0 to the first subgroup 
and 1 to the second.

– Continue partitioning the subgroups until all letters are exhausted: 
after each partition, assign a 0 to the first group and a 1 to the 
second and append the newly assigned bits to the previously assigned 
bits. 
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Example
Given a text message “ELECTRICAL ENGINEERING,” determine the 

relative probabilities of the letters in the message and find the Shannon-
Fano code for each letter. Ignore the space character. 

• Since there are 21 letters in the message, we have the following
probabilities:

Letters: {E, L, C, T, R, I, A, N, G}
Probabilities: {5/21, 2/21, 2/21, 1/21, 2/21, 3/21, 1/21, 3/21, 2/21}

• Code assignment: Codeword     Length
E 5/21 0 0 00 2
I 3/21 0 1 0 010 3
N 3/21 0 1 1 011 3
L 2/21 1 0 0 100 3
C 2/21 1 0 1 0 1010 4
R 2/21 1 0 1 1 1011 4
G 2/21 1 1 0 110 3
T 1/21 1 1 1 0 1110 4
A 1/21 1 1 1 1 1111 4

3
1

3
2

4
3

2
4
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The Binomial Probability Law
Consider a sequence of n binary values: 

Pr[1] = p, Pr[0] = 1 - p = q. 
Define: A = {occurrence of r 1’s in a sequence of length n}
The number of ways r 1’s can occur in a sequence of length n
is given by the binomial coefficient, Cr

n:
– Note that each of these arrangements has r 1’s and n − r 0’s. 
– The probability of occurrence of such an arrangement is then 

given 
by  pr qn-r.

The probability of the desired event: Pr[A] r n rn
p q

r
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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Example 1:
Consider a modem connection with a channel bit error rate 
p = 10−2. Given that the data are sent as packets of 100 bits, 
what is the probability that (a) 1 bit is in error and (b) 3 bits 
are in error?   

060999.099.001.0
3

100
]errorin  bits 3Pr[)b(

3697.099.001.0
1

100
]errorin bit  1Pr[)a(

973

991

=⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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Example 2:
Consider a communication system with a channel bit error rate,
p = 10−3.  The transmitter sends each bit three times, and the
receiver takes a majority poll of the received bits to determine
the received bit.  What is the probability of bit error now? 
(a) Each transmission is a Bernoulli trial with n = 3. 

Define:  A = {2 or more bit errors in 3 trials}

2 3

6 3 9 6

Pr[error] Pr[A] Pr[ 2]
3 3

(1 )
2 3

3 10 (1 10 ) 10 3 10

r

p p p

− − − −

= = ≥

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= × − + ≅ ×
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(b) Consider 5 bits  (n = 5). 
Define: A = {3 or more bit errors in 5 trials}

3 2 4 5

9

Pr[error] Pr[A] Pr[ 3]
5 5 5

(1 ) (1 )
3 4 5

9.985 10

r

p p p p p

−

= = ≥

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

≅ ×

Example 2 cont’d:



1,2-57 © M. Tummala & C. W. Therrien 2004

Example:
Consider a sequence of 10 binary digits. Let Pr[1] = 0.52. 
(a) What is the probability of obtaining 8 or more 1’s? 

Define:  A = {8 or more 1’s in a sequence of 10 bits}

(b) What is the probability of obtaining exactly six 1’s?
Define:  A = {exactly six 1’s in a sequence of 10 bits}

8 2 9 10

8 2 9 10

10 10 10
Pr[A] 0.52 0.48 0.52 0.48 0.52

8 9 10

45 0.52 0.48 10 0.52 0.48 0.52 0.0702161458426

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= ⋅ ⋅ + ⋅ ⋅ + ≅

6 4 6 410
Pr[A] 0.52 0.48 210 0.52 0.48 0.220396303407

6
⎛ ⎞

= ⋅ ⋅ = ⋅ ⋅ ≅⎜ ⎟
⎝ ⎠
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The Geometric Probability Law
Consider a sub-experiment. Let A be the desired event. 

Let Pr[A] = p,    Pr[AC] = 1 − p. 
Repeat the sub-experiment until A occurs. 
• Suppose that A occurs in the kth trial: 

AC AC             AC                AC             …    AC A

1 2           3            4 …        k-1           k

The probability that A occurs in the kth trial is: 

th

1 uneventful trials
1

Pr[A occurs in k  trial] (1 p)(1 p)(1 p)(1 p) (1 p) p

(1 )
k

kp p
−

−

= − − − − −

= −

"�������	������


Other than desired Desired
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Example:
In a computer to computer modem link, the receiving computer 
has an error detection algorithm. If it detects a bit error, it 
requests retransmission of the packet. For simplicity, assume 
that the packet length is 8 bits. Let the probability of channel
error be Pr[error] = 0.1. 

(a) Determine the probability that the error occurs after the 
5th bit in a packet. 

16002279.0
1.09.01.09.01.09.0

]8Pr[]7Pr[]6Pr[]5Pr[
765

=
⋅+⋅+⋅=

=+=+==> kkkk
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(b) What is the probability that a packet is retransmitted 2 times?

• A packet is retransmitted once if at least one of the 8 bits 

is in error.
• It is retransmitted again if at least one of the retransmitted 

8 bits is in error.

( )

8

1

2

Pr[1 retransmission] Pr[ 1] Pr[ ] 0.5695

Pr[2 retransmissions] Pr[1 retransmission] 0.3244
i

k k i
=

= ≥ = = =

= =

∑

Example cont’d:


